CoBTeK – CMRR
Posters

Centre Edmond et Lily Safra
Automatic Speech analysis for the assessment of cognitive status in dementia patients with the help of a mobile application

König, A., Satt, A., Sorin, A., Toledo-Ronen, O., Hoary, R., Derreumaux, A., David, R., Verhey, F.R.J., Alten, P., Robert, P.H.,

Background : Assessment of cognitive decline, in particular at early stage Alzheimer’s disease and other dementia types, as well as Mild Cognitive Impairment (MCI) is complex; a broad range of heterogeneous assessment methods exist. Various types of dementia and MCI are manifested as irregularities in human speech and language, which have proven to be strong predictors for the disease presence and progression. Therefore, automatic speech analysis is expected to be a useful tool in providing indicators for assessment and detection of early stage dementia and MCI.

Aims & Methods : In EU FP7 Dem@Care project IBM Research Haifa and CoBTek, CMRR, Nice teamed up to develop accurate and cost-effective method supporting clinicians in dementia assessment. The examination protocol includes few spoken cognitive tasks.

- Mobile application administers the examination and records patient’s voice
- Automatic voice analysis software produces the assessment score

Mobile application for automated cognitive spoken Mobile device presents spoken tasks and records patient’s voice

- Easy assessment at clinical consultations for early diagnosis of dementia and its progression monitoring
- Self-assessment at home with assistance of family member

The audio recordings are transferred to a server computer performing voice analysis and automatic assessment of cognitive status. 23 Healthy elderly subjects (HC), 27 MCI patients and 31 AD patients were recorded while performing several short vocal cognitive tasks during a regular consultation.

Tasks included: verbal fluency, picture description, counting down, and free speech task.

The voice recordings were processed in two steps:
1/ vocal markers were extracted using speech signal processing techniques, the vocal markers were tested to assess their ‘power’ to distinguish between HC, MCI and AD.
2/ training automatic classifiers for detecting MCI and AD, based on machine learning methods, and testing the detection accuracy.

Results: Preliminary results show high accuracy rates for the continuous ‘cognitive vocal score’ which was calculated for each participant within the range of 0 - 1. The fluency and free speech tasks obtain the highest accuracy rates of classifying AD vs. MCI vs. HC. Using the data, we demonstrated classification accuracy as follows: between HC and MCI: 84 ± 4%, between HC and AD: 90 ± 3%, and between MCI and AD: 83 ± 4%.

Conclusions: Decline in cognitive functioning affects speech production in different ways. The results indicate the potential value of automatic speech analyses via a mobile application of recorded vocal cognitive tasks for accurate automatic differentiation between HC, MCI and AD. This can provide the clinician with meaningful information for assessment and early screening and diagnosis purposes, based on non-invasive, simple and low-cost method.

Mail to A. König: a.konig@maastrichtuniversity.nl
The Use of Virtual Reality for Cognitive Stimulation in Patients with MCI and Alzheimer’s Disease

Valeria Manera¹, Emmanuelle Chapoulié ¹, ², Jeremy Bourgeois¹, Rachid Guerchouche², Pierre-David Petit¹, George Drettakis² & Philippe Robert¹, ²

1. CoBTeK, Université de Nice Sophia-Antipolis, and association IA; Nice, France. 2. INRIA Sophia Antipolis, France. 3. CMRR, CHU

Introduction

⇒ Virtual reality (VR) is ideal to design cognitive trainings because it provides realistic, familiar but controllable environments [1].
⇒ Here, we tested the acceptability of two VR solutions for elderly participants and patients with Mild Cognitive Impairment (MCI) and early to moderate Alzheimer’s disease (AD) to stimulate autobiographical memory (study 1) and attention and concentration (study 2).

Study 1

Autobiographical memory

Methods

Participants
⇒ 18 healthy volunteers (>60 years) without cognitive impairment

Stimuli and conditions
⇒ 4 conditions: 2 with pictures (A and B), 2 with VR (C and D):

- Grey
- FamPict
- FamVR
- UnfamVR

Technology
⇒ BARCO iSpace, screen 320 cm x 240 cm, res. 1.600 x 1,200 pixels
⇒ Passive Inftec stereo via glasses tracked with ART tracking system

Procedure
⇒ Clinical assessment to verify the absence of cognitive impairment
⇒ Autobiographical fluency task in the 4 conditions (2 min). Participants need to generate as many memory as possible. Responses scored following the Remember/Know procedure
⇒ Self-report questionnaires assessing acceptability (motivation, security, fatigue).

Results

Acceptability

Autobiographical fluency task

⇒ Participants less motivated in the Grey condition
⇒ More “Remember” response in FamPict and FamVR compared to Grey and UnfamVR [2]

Study 2

Attention and concentration

Methods

Participants
⇒ 30 MCI (16 M; Age: M=75.5y, SD= 6.8y; MMSE, M= 25.5, SD= 2.7)
⇒ 30 AD (18 M; Age: M=76.2y, SD= 7.1y; MMSE, M= 20.0, SD= 3.3)

Stimuli and conditions
⇒ 2 conditions: paper and VR (same familiar environment)

Technology
⇒ Imaged-base rendering system
⇒ BARCO, 2 LED screens 155cm x 174cm, res. 1920 * 2160 pixels
⇒ Stereo glasses without tracking

Procedure
⇒ Clinical cognitive and behavioural assessment
⇒ Attentional task in the 2 conditions (5 min). Participants need to find characters that meet specific criteria (e.g., a blue T-Shirt)
⇒ Self-report questionnaires assessing acceptability (satisfaction, security, fatigue).
⇒ Participants are free to continue in any condition if they want

Results

Acceptability

Attention task

⇒ Participants more satisfied in VR condition, no differences in security and fatigue; MCI played more in VR (implicit satisfaction)
⇒ More targets in VR, no differences in the number of errors

Conclusions

⇒ VR setting were considered acceptable, secure and motivating by both elderly healthy participants and patients with MCI and AD.
⇒ These results suggest that VR solutions are useful motivational tools.
⇒ As apathy is very common among these populations, having motivating tools is a key element in designing effective rehabilitation programs

References
Ecological assessment of autonomy in Instrumental Activities of Daily Living using an automatic video monitoring system

Alexandra König a,c, Carlos Fernando Crispim Junior d, Alvaro Gomez Uria Covella d, Francois Bremond a,b,d, Alexandre Derreumaux d, Renaud David d,e, Frans Verhey b, Pauline Aalten d, Philippe Robert a,c

a EA CoBTeK, Edmond & Lily Safra research center, University of Nice Sophia Antipolis, France
b School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht, University Medical Center, Maastricht, The Netherlands
c Centre Mémoire de Ressources et de Recherche, CHU de Nice, Nice, France.
d INRIA - STARS - Sophia Antipolis, France

Background: Currently, the gold-standard for the assessment of autonomy and functional ability involves clinical rating scales. However, scales are often limited in their ability to provide objective and sensitive information. In contrast, information and communication technologies (ICT) may overcome these limitations by capturing more fully the functional, as well as executive cognitive disturbances associated with Alzheimer disease (AD). Most available technologies have been developed for monitoring purposes - such as fall detection or gait analyses - relying on wearable, environmental or video sensors. We investigated the quantitative assessment of the autonomy in dementia patients based not only on gait analysis but also on the participant performance on Instrumental Activities of Daily Living (IADL) automatically recognized by a video event monitoring system.

Methods: Three groups of participants (healthy elderly subjects (HC), Mild Cognitive Impairment (MCI) patients and AD patients) had to carry out a 20-min standardized scenario consisting of directed tasks (single and dual task) and several IADLs such as preparing a pillbox or making a phone call. During this time, they were recorded by 2D video cameras capturing all their activities in the room. The performance quality of each participant was manually annotated and grouped into either ‘good’, ‘mediocre’ or ‘poor’ according to the amount of successfully carried out activities. After the recording session, video sensor data was processed by an event monitoring system that automatically extracts kinematic parameters about the participant gait and recognizes the activities undertaken by the participant. These parameters where then used for the assessment of the participant performance during the protocol task, here referred as participant autonomy. Autonomy assessment is approached as classification task using artificial intelligence methods that takes as input the parameters extracted by the event monitoring system, here referred as behavioral data. Dementia diagnosis prediction is also evaluated as complementary information about the patients’ cognitive status.

Results: The overall activities were accurately recognized with high recall and precision results. The most accurately recognized activities were: ‘prepare medication’ with 93% precision and ‘using phone’ with 89% precision. The diagnostic group classifier based on automatically extracted video features obtained a precision of 73.46% when combining the analyses of physical tasks with IADLs. However, in a further analysis, the created autonomy group classifier based on simply the automatically extracted video features obtained an precision of 83.67% when combining directed tasks and IADLs.

Conclusion: The results suggest that it is possible to quantitatively assess IADL functioning supported by an automatic video monitoring system and that even based on the extracted data the groups could be classified with highly accuracy. In particular, IADLs such as preparing medication and making a phone call showed high detection precision captured by the Automatic Video Monitoring System. This means, that the use of such technologies, may provide clinicians with diagnostic relevant information to improve autonomy assessment in real time decreasing observer biases.

Mail to A. König : a.konig@maastrichtuniversity.nl